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Abstract 
Correlation lengths and defect-strength parameters, 
related to the separations and magnitudes of dis- 
continuities in imperfect crystals, are obtained from 
X-ray rocking curves using a stochastic model of 
crystal defects. The model describes the diffraction of 
X-rays from an imperfect crystal containing surfaces 
of defects, such as stacking faults, and misoriented 
crystal grains. The two defect parameters provide a 
measure of crystal quality. A method of extracting 
the parameters from rocking curves is described in 
the limit of kinematic X-ray diffraction. The method 
is applied to X-ray diffraction data obtained from 
thin films of CdTe and Hgl _xCdxTe grown on GaAs 
substrates. The ability of the model to fit the X-ray 
data is a test of the stochastic model. 

Introduction 
X-ray diffraction is used extensively to measure the 
quality of thin crystalline films grown by techniques 
such as molecular-beam epitaxy and metalorganic 
chemical vapour deposition. A single parameter, the 
full width at half-maximum of the Bragg reflection, is 
the usual measure of the crystal quality. However, 
many theories of X-ray diffraction from imperfect 
crystals involve two parameters related to the nature 
of the imperfections (Zachariasen, 1967; Kato, 1980; 
Becker & AI Haddad, 1990; Davis, 1992). Therefore, 
it should be possible to obtain a better measure of 
the crystal quality by extracting two parameters from 
the X-ray data. 

The stochastic model of X-ray diffraction 
developed by Davis (1992) describes the mean reflec- 
tivity from an imperfect extended-face crystal con- 
taining surfaces of defects and misoriented crystal 
grains. These defects produce discontinuities in the 
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strain and strain gradients in the crystal. The model 
contains two parameters: a defect-'strength' param- 
eter, tr, and a correlation length, l. The correlation 
length is defined by a correlation function and is the 
distance over which the correlation between the 
phases of the diffracted X-rays falls by 1/e. If the 
width of the Bragg reflection, related to b t2 = o,2/21, is 
chosen as one independent measure of the crystal 
quality, then a possible choice for the second 
independent parameter is the correlation length. 

The aim of this paper is to verify that the 
stochastic model can fit X-ray data from a number of 
thin films and to demonstrate the method by which 
the two defect parameters may be obtained. The 
model is applied in a kinematic limit to X-ray data 
sets obtained from thin films of CdTe and 
Hgl_xCdxTe grown on GaAs substrates. In the 
following sections, the stochastic model is briefly 
reviewed, the method for fitting the model to the 
data is described and the experiments and their 
results are discussed. 

Theory 
The stochastic defect model for X-ray diffraction 
from imperfect crystals is based on a form of the 
Takagi-Taupin equations (Takagi, 1962,  1969; 
Taupin, 1964). The main aspects of this model are 
summarized below. For a complete description of the 
model the reader is referred to Davis (1992). 

For thin films in which the change in the ampli- 
tude of the transmitted wave is small, a kinematic 
solution for the complex reflectance R(t) at depth t is 

t t 

R(t) = e x p [ -  i2a f fl(t')dt']f iaxh(t') 
0 0 

t' 

x exp [i2a f f l ( t")dt"]  dt', (1) 
0 
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where t is measured from the lower boundary of the 
film (e.g. the epilayer-substrate boundary) and R(0) 
= 0 at this boundary, i.e. there is no interference 
between substrate and epilayer reflections. This situa- 
tion arises when there are significant lattice- 
parameter differences between the substrate and the 
film, such as occur with CdTe grown on GaAs. 

The symbols are defined as follows: a = -7rk/yh; 
1/k = A is the X-ray wavelength; yh is the direction 
cosine of the diffracted wave with respect to the 
coordinate axis; 2"~, - Cx'h, where C is a polarization 
factor and X~, is the Fourier component of the dielec- 
tric susceptibility associated with the reciprocal- 
lattice vector h. X~, is a complex quantity and 
includes the anomalous scattering factors. The 
resonance parameter,/3,  is given by 

fl = nZ[(k 2 - kZ)/2k 2] - nigh" V(h" u)/k], (2) 

where n = (1 + Xo) '/2 is the refractive index for the 
X-rays; k and kh are the wave vectors of the trans- 
mitted and diffracted waves, respectively, in the crys- 
tal interior; ~,h is the unit vector in the direction of kh; 
and u is the displacement of a point in the lattice 
from its relaxed position resulting from strains in the 
crystal. 

Bragg's law, h - 2 k s i n 0 8 ,  and the relation 
kh = k + h allow the first term in (2) to be written as 

nZ[(k 2 - kZ)/2k 2] -'- - sin 2 08(0 - 08) - (/t'o/2)( 1 + b), 

(3) 

where 0 is the angle of incidence of the X-ray beam, 
] 0 -  08] << 1 and b is the asymmetry parameter 
defined by 

b = s in (0B-  0s)/sin(08 + Os), (4) 

where 0s is the angle in the diffraction plane between 
the crystal-surface normal and the reciprocal-lattice 
vector for the Bragg reflection. It is defined here to 
be positive if the peak of the Bragg reflection occurs 
when the angle between the incident beam and the 
plane of the crystal surface is greater than the Bragg 
angle, 08. The second term in (3) is a refraction term 
resulting from the boundary conditions at the crystal 
surface [see, for example, Zachariasen (1945)]. The 
effects of absorption are contained in the imaginary 
component of X'o. 

The strain at a point in the crystal is assumed to 
arise from two sources: (i) smoothly varying strains, 
such as arise from lattice mismatches or from stresses 
at the crystal boundaries; (ii) strains arising from the 
defects in the crystal, such as stacking faults and 
misoriented crystal grains. The second source of 
strains can be separated into a smoothly varying 
component, which is the average of the strains over a 
surface at depth t, and a rapidly fluctuating com- 

ponent, which is the difference between the true 
strain at t and the smoothly varying average. The 
smoothly varying strain components in the second 
term in (2) and the angle-dependent and refraction 
terms in (3) are written as ( f ) ,  and the fluctuating 
strain components are written as f~, so that 

f ( t )  = ( f ( t ) )  + Be(t), (5) 

where the average (fie) = 0. Strictly, the average here 
is an ensemble average over an idealized imperfect 
crystal. However, in practical terms, this is taken as 
an average over that area at depth t in the crystal 
that is diffracting the X-ray beam. For this purpose, 
the X-ray beam must be sufficiently broad to be 
influenced by (or averaged over) a statistically sig- 
nificant number of defects. 

In an experiment using X-rays, it is the average 
reflectivity (R 'R)  that is measured. If the fluctuating 
part of the resonance parameter is Gaussian distri- 
buted with variance v 2, then the average reflectivity 
is a function F of the two-point correlation, 
(fl e( t,)fl e( t2)): 

l '  l '  

(R 'R)  = F ( e x p [ -  2a  2 f f (flg(t,)fle(t2))dt, dt2] ). (6) 

The stochastic defect model describes stacking faults 
and misoriented crystal grains in terms of discon- 
tinuities in the strain and the strain gradients in the 
crystal, leading to a correlation given by 

( fe ( t ) fe ( t  + r ) ) =  v2exp( - Irl//), (7) 

where the variance v 2 = o'2/2l. Although (7) has been 
derived from a consideration of stacking faults and 
crystal grains, it is applicable to any system in which 
the resonance parameter, f ,  and its gradients are 
discontinuous and are delta-function correlated with 
position. From (6) and (7), the mean reflectivity 
depends on 

t '  l '  

e x p [ -  2a 2 f f ( fe( t , ) fe( tz))dt ,  dt2] 
l "  l "  

= exp{-4a2v212[(lrl/l  ) + e x p ( - I r l / l ) -  1]} 

- (1/2rr) f y(x)exp(--iKr)dK, (8) 
- - o o  

where r = t ' - t "  and (8) defines the Fourier trans- 
form of the function y(K). It can be shown that 

oo 

(R 'R)  = f [y(K)/2rr]lR(2a(f ) - ~)]2dK, (9) 
- - o o  

where 2 a ( f )  is a function of the angle of incidence of 
the X-ray beam, as shown in (3). The term 
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R(2a(fl))l z in (9) is the reflectivity of the crystal in 
the absence of the discontinuities, or random pertur- 
bations, resulting from the defects and can be calcu- 
lated from (1). In this sense, it represents a 
continuous crystal and it contains all the smoothly 
varying strain terms, including the average of the 
strains resulting from the imperfections, as discussed 
above. This term is called the continuous-crystal 
reflectivity. The effects of the random fluctuating 
strains are obtained by convolving the continuous- 
crystal reflectivity with the function y(x). 

With the mean reflectivity (R'R) of a crystal 
obtained from a diffraction experiment with a broad 
incident beam, the aim is to deduce y(K) from (9) 
and then to extract the defect parameters u 2 and l 
using (8). This is conveniently done by taking the 
Fourier transforms of both sides of (9) and using the 
fact that the Fourier transform of the convolution of 
two functions is equal to the product of the Fourier 
transforms of the functions. The Fourier transform 
of y(K) is simply the correlation factor given in (8). 
Then, 

[ ~=(IR(K~)I2) exp(-- iKt3r)dKt3] 

x IR(K )I 2 e x p ( -  ixor)dKt3 
- o o  

= exp{-4aZuZl2[( r/l) + exp(- ITI/I)- 13}, (lO) 

where Kt~ is the real part of 2a(fl) averaged 
throughout the volume of the crystal. That is, if the 
crystal thickness is tc, then 

Kt~ = (1/to)Re 2a(fl(t'))dt' . (11) 

In practical terms, Kt3 is linearly related to the mean 
deviation of the angle of incidence from the angle at 
maximum reflectivity [see (3)]. 

The actual count D(xt3 ) measured by the detection 
system in an experiment will be related to the crystal 
reflectivity by a scale factor A: 

D(K ) = A<IR(K )I2), (12) 

continuous-crystal reflectivity must be known, as 
required by the left side of (10). If the smoothly 
varying strain in the crystal is known as a function of 
t then (/3(t)) can be determined and the reflectivity 
can be calculated from (1). This is particularly simple 
if there is no strain or if the strain is constant. 
Furthermore, if the crystal film is thick enough for 
the continuous-crystal reflectivity to approximate a 
delta function at the Bragg angle, then the Fourier 
transform of the continuous-crystal reflectivity is 
approximately constant and can be neglected alto- 
gether in (10). A strain that varies with t usually 
gives rise to an asymmetry in the reflectivity about 
the Bragg angle. If the t dependence of such a strain 
is not known, then the mean reflectivity can be 
obtained from a triple-crystal or high-resolution 
experiment, which will resolve regions of constant 
strain in the crystal. This is discussed below. 

The imaginary part of the ratio of the Fourier 
transforms in (10) should be small (ideally zero) 
because the correlation factor is real. A significant 
imaginary component may arise if the imperfect- and 
perfect-crystal rocking curves are not centred about 
the same angle. This is a trivial 'phase' effect, which 
is removed by taking the absolute value of the ratio. 
An imaginary component can also occur if the 
imperfect-crystal rocking curve has a significant 
asymmetry that cannot be accounted for in the cal- 
culation of the continuous-crystal rocking curve. In 
this case, the stochastic model cannot provide a 
realistic description of the defects in the sample. 

Experiment 
X-ray data were collected using the configuration in 
Fig. 1. A dispersive arrangement of channel-cut sili- 
con monochromators provides a parallel and mono- 
chromatic X-ray beam in the plane of diffraction 
using a succession of reflections from silicon (111) 
planes. The analyser is a two-reflection channel-cut 
silicon (111) monochromator that can be mounted 
onto the 20 arm of the diffractometer when a high- 
resolution experiment is required. This is a slitless 
system that projects an image of the source onto the 
sample. The slits shown in the figure merely limit the 

which depends on the incident X-ray-beam intensity, 
losses by absorption and scattering between the 
sample and the detector, detector efficiency etc. Then 
the left side of (10) represents the correlation factor 
in a sample obtained from a diffraction experiment 
and the right side is the predicted correlation factor 
based on the stochastic model. 

The aim of this present work is to demonstrate 
that the predicted correlation factor has a functional 
form suitable for fitting X-ray data from crystalline 
films of varying degrees of perfection. To do this, the 

Opti°~ ~I IAIInalyser~¢~rDetecto 
Slit Slit ) ~  
I @ I ,./,'i"/ 
I =- M ° n ° c h r ° ~  le 

S o u r c e  (Si III) 

Fig. 1. Diffractometer configuration. The analyser mono- 
chromator is only used for high-resolution diffractometry. 
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No.  

1 
2 
3 
4 
5 

Table 1. Data for each thin-film sample 

Material Orientation Thickness (lxm) 0~ (°) 0s (°) 
CdTe 400 0.90 0.0 28.38 
CdTe 400 0.84 0.0 28.38 
CdTe 422 1.63 0.0 35.61 
Hgo.TsCdo.25Te 311 1.5 4.3 23.27 
Hgo.nCdo.=Te 400 1.0 0.0 28.46 

amount of diffusely scattered radiation reaching the 
sample and define the size and divergence of the 
beam out of the plane of diffraction. The beam 
properties in the diffraction plane are determined by 
the monochromators. The beam properties at the 
sample were: (i) a divergence in the diffraction plane 
of 12.8" and a width of 0.8 mm; (ii) a divergence out 
of the diffraction plane of 36" and a height of 4 mm. 
The X-ray wavelength was 0.154 nm, obtained using 
the Cu Kal characteristic radiation from a sealed- 
tube source. The advantage of this system is that it 
produces an incident beam that closely approximates 
the assumption in the stochastic model of a mono- 
chromatic plane wave incident on the sample. It also 
produces a broad X-ray beam that averages over a 
large volume of the sample. 

X-ray rocking curves (Figs. 2a, b, c and d) were 
collected from five samples of thin films of CdTe and 
Hgl_xCdzTe, each about 1 Ixm thick, grown on 
GaAs substrates (see Table 1). The data from sample 
4 (Fig. 2d) and sample 5 (not shown) had significant 
asymmetries on the high-angle sides of the Bragg 
peaks, consistent with nonconstant compressive 
strains in the films. Because the dependences of these 
strains on depth in each film are not known, alter- 
native data sets were collected using the analyser in a 
fixed orientation in front of the detector. In this 
configuration, only those X-rays diffracting from 
regions with the same lattice parameter (constant 
strain) are detected. The data from these high- 
resolution experiments are shown in Figs. 2(e) and 
(f). 

length to a power of two, as required by the fast 
Fourier transform (FFT) algorithm (Press, Flannery, 
Teukolsky & Vetterling, 1987). Both the experimen- 
tal and the calculated data sets were Fourier trans- 
formed and the ratios of the transformed data were 
taken in accordance with equations (10) and (12). In 
principle, these ratios should be real and positive. 
However, the noise in the X-ray data introduces an 
imaginary component and causes this and the real 
component to fluctuate about zero for large r. To 
allow the logarithms of these data to be taken for 
both fitting and plotting, the absolute values of the 
ratios were taken. The scale factor A is assumed to 
be constant and is chosen for each experiment so 
that the ratio in (10) is unity at r = 0. This procedure 
yields the experimental correlation factors as func- 
tions of r (Fig. 3). 

For large 7, the noise from the X-ray data domi- 
nates the correlation factor. Fluctuations in .the data 
will arise from the shot noise associated with photon 
counting, which is governed by Poisson statistics. 
The standard deviation of these fluctuations can be 
estimated from the zeroth-order Fourier coefficient 
of the transformed data, as discussed in the 
Appendix, giving a measure of the expected level of 
noise. The shot-noise levels for the data sets are 
shown as dashed lines in Fig. 3. 

The argument of the exponent on the right side of 
(10) was fitted to the logarithm of the ratios using 
a Levenberg-Marquardt nonlinear least-squares 
algorithm (Press et al., 1987). The algorithm 
optimized the parameters /22 and l to obtain the best 
fits through the data, shown as the solid lines in Fig. 
3. The defect parameters were used in (8) and (9) to 
calculate the imperfect-crystal rocking curves from 
the continuous-crystal reflectivities. Each curve was 
scaled to match its peak with the peak value of the 
data and the average background count was added. 
The curves appear as the solid lines through the data 
points in Fig. 2. 

While the fits to the data in Fig. 3 appear reason- 
able, objective measures of the quality of each fit are 
required. For this purpose, we define 

Analysis 

The continuous-crystal reflectivities were calculated 
from (1) using the data for each sample given in 
Table 1. The scattering factors required in the calcu- 
lation of Xh were obtained from Doyle & Turner 
(1968) and Cromer & Liberman (1970). The scat- 
tering factors for the Hg 1 _xCdxTe alloys were calcu- 
lated from weighted averages of the scattering 
factors for HgTe and CdTe according to the frac- 
tions of mercury and cadmium. Linear trends 
between the first and last counts in each experimental 
data set were subtracted to remove the background. 
Each data set was padded with zeros to extend its 

F(r) - -4a2/2Zl2[(z/l) + e x p ( - z / l ) -  1] (13) 

and let AF(r) be the difference between the 
logarithm of the ratio of the data and the calculated 
value, F(r), at z. Then the change Al in the corre- 
lation length required to produce a change AF(z) in 
the fit at z is 

Al= AF(r)/(dF/dl) (14) 

and similarly for /2 2. Note that /22= crZ/2l is a func- 
tion of l that must be included in the derivative 
dF/dl. If there are N data points, each at a particular 
r,, then the mean-square deviations of the defect 



10  4 -  

10  3' 

10  3 .  

, l I I I I I I I I , I , I I , , I I I I I I I - /  
- 1 2  -o6  o o 06  

Ang le  (*)  

(a) 

10  4 -  

- 1 . 0  - 0 . 5  0 .0  0 .5  10  

• ._ .  
i i i i i i i i i i i , i i , i i i i i i i | i , , i i i i i i i i i i i , I 

Ang le  ( * )  

T. J. D A V I S  759 

(b) 

10 "  

10  3 

j 
I I I l | I I I l I I l l I I I I l I I I I I I I 

0 .6  - 0 . 4  - 0 . 2  0 .0  0 .2  0 .4 '  ' ' '0.=6 

Ang le  (*)  

(c) 

10  3 .  

~: 10  2 -  f 

• . -  , , . .  
. ../...-~,\,-" 

1 0  " ~ . - - ' :  7 "  ""  

A 

i i 

%.... 

"~ t  . 

"'%' . . . :  :" "..t ".... • 

• "E'-'%---" . . 7  ..:.-.----~- 
. . . . . .  

. . . .  

. . .  

I l l  l l l l l l | l l  I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1  I I 1 1 1 1 1 1  l l l l l l l l l l  I 

- 0 . 4  - 0 . 2  - 0 .0  0 .2  0 .4  0 .6  

Ang le  ( * )  

(d) 

10 " "  

o 

10  3 

10  4 

: ~  1 0  3 .  

i i i i i i i i i I I I I I I i I I i I [ I i I i I I I I I I I I I I I  I I I I I  I I I I I I i I I I  

- 0 . 2  - 0 . 0  0 .2  0 .4  0 .6  

Ang le  ( * )  

(e) 

10  2. 

10  2 , 

- 0 . 4  - 1 . 0  

/ . .  "+ , . . : .  + ' - . * ; . ' ; . . . "  . . • . . . ~ . . . "  

• . • . .  

i , i i , , i i I i i i , , , , , , i i , i i , i i i i , I l , i , i , i , , i 

- 0 . 5  0 .0  0 .5  1 .0  

Ang le  (*)  

( f )  

Fig. 2. X-ray rocking curves from (a) sample 1, (b) sample 2 and (c) sample 3; (d) rocking curve from sample 4 showing marked 
asymmetry. High-resolution data from (e) sample 4, (f)  sample 5. 
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Fig. 3. Experimental correlation factors (points) and curves of best 
fit (solid lines) for (a) sample 1, (b) sample 2, (c) sample 3, 
(d) sample 4 and (e) sample 5. The dashed line in each figure is 
the estimate of the shot noise in the data. 
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Table 2. Results from fi t t&g the model to X-ray data 

No.  N 

1 29 
2 15 
3 52 
4 75 
5 36 

Sho t  no i se  
v 2 l ( g m )  AO (o) x 10 -3  

9.90 (160) x 10 -6 3.59 (314)x 10 -3 0.216 1.93 
1.76 (7)x 10 -s 5.53 (44)x 10 -3 0.287 1.98 
7.94 (52) X 1 O- 7 1.66 (35) × 1 O- 2 0.0539 2.49 
7.92 (57)× 10 -8 5.95 (48)× 10 -2 0.0222 1.29 
1.01 (23) x 10 -6 0.110 (26) 0.0687 2.39 

<(afit)'-> ',~ 
x 10 -3  

5.08 
2.95 
5.15 
1.49 
5.75 

parameters and the fit to the data can be written as 

N 

( (a ly)  = (l /N) E 
n = l  

N 

2) = (l /N) 
n = !  

N 

((Afit) 2) = (l/N) E {exp[F(r,) + AF(T,)] 
n = l  

- exp[F(r,)]} 2 . (15) 

The r.m.s, deviations for each data set were calcu- 
lated from (15) and are given in Table 2. The r.m.s. 
deviations for u 2 and l are shown as errors in these 
parameters. The value of N was determined by that 
part of the fit that lies above the shot-noise level. The 
half-width of each rocking curve, A0, defined by that 
value of 0-08 for which fl(O) 2= u 2, is also given in 
the table. 

Discussion 

A comparison between the last two columns of Table 
2 shows that the r.m.s, deviation of each fit from the 
data is within a factor of three of the shot-noise level, 
which indicates that the stochastic model provides 
the correct functional form for the defect corre- 
lations in all samples, to a level of accuracy 
approaching the noise level in the data. 

There are significant numbers of fluctuations in the 
noisy regions of the data (Fig 3), which exceed the 
shot-noise levels by factors close to the r.m.s, devia- 
tions of the fits. Fluctuations of this magnitude were 
observed in the imaginary components of the ratio in 
(10). This suggests that there are additional noise 
sources and long-range small-magnitude correlations 
that have not been accounted for in the analysis. The 
origins of these fluctuations may be nonuniformities, 
or biases, in the distributions of the defects, which 
introduce asymmetries in the X-ray data, leading to 
fluctuations of this type in the correlation factor. 
Spurious Fourier components may also be intro- 
duced when each data set is padded with zeros as 
required by the FFT algorithm. 

In some instances, notably for samples 1 and 3 
(Figs. 3a and c), the experimental correlation factors 

show progressive deviations from the fit, well before 
the noise levels are reached. Such deviations indicate 
that the assumptions in the stochastic model of 
Gaussian-distributed strain and strain-gradient fluc- 
tuations, and the correlation assumptions leading to 
(7), are beginning to fail. The extent of the failure of 
the model is ultimately gauged by the resultant errors 
in the defect parameters. 

A comparison of correlation lengths between 
samples shows that the defects in samples 1 and 2 are 
point-like, these samples having correlation lengths 
equivalent to about six unit-cell widths; i.e. there are 
strain fluctuations in these samples that, on average, 
are only coherent over short distances, suggesting the 
existence of a large number of closely spaced defects. 
The other samples have longer correlation lengths 
and the defects have more the character of mosaic 
blocks; i.e. the strain fluctuations are coherent over 
longer distances, which is suggestive of crystal sub- 
grains. The differences between the samples arise 
from the different growth conditions of the films and 
also from the different crystallographic orientations 
of the substrate surfaces. Note that, although the 
rocking-curve widths of samples 3 and 5 are similar, 
both the correlation lengths l and the defect strengths 
o "2 differ by an order of magnitude. This implies that 
the distributions of defects and their structures, 
measured from these two samples, are quite differ- 
ent. The usual measure of crystal quality, based 
solely on the rocking-curve width, would not distin- 
guish between these samples. 

The method presented above for measuring the 
defect parameters is based on a kinematic description 
of X-ray diffraction. Although the stochastic model 
has been incorporated in a dynamical formulation by 
Davis (1991), the resulting equation is difficult to 
solve analytically and numerical solutions are likely 
to require intensive computations. For crystals in 
which dynamical extinction effects are important, the 
kinematic method is only applicable to data collected 
well away from the Bragg peak where the scattering 
becomes kinematic. 

Summary 

A model for the diffraction of X-rays from imperfect 
crystals has been used to obtain two parameters that 
characterize the statistical properties of the crystal 
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defects. A method of extracting these parameters 
from X-ray data in the kinematic regime has been 
discussed. In its simplest form, where the rocking- 
curve width from the imperfect sample is very much 
greater than that from the continuous crystal, the 
method only requires the Fourier transform of the 
data and the fit to this of an analytical expression 
involving the unknown defect parameters. On a 
modest personal computer, this process takes a few 
minutes at most. For other crystals, the continuous- 
crystal reflectivity must be calculated, which either 
requires knowledge of the strain profile in the crystal, 
or requires the data to be collected in a high- 
resolution triple-crystal experiment. 

It was shown that the correlation factor predicted 
by the defect model has the correct functional form 
to fit experimental data obtained from five samples 
of CdTe and Hdl_xCdxTe films grown on GaAs. If 
this form is sufficiently general to fit the data from a 
large class of imperfect extended-face crystals then, 
through the two defect parameters in the model, it 
will provide an objective measure of the crystal 
quality and a means of characterizing the statistical 
nature of defects. 

The author thanks Dr S. W. Wilkins for his 
careful reading of the manuscript. This work was 
partially funded under the Generic Technology com- 
ponent of the Industry, Research and Development 
Act, 1986 (grant no. 15052). 

APPENDIX 

Let f ( x ) =  ( f ( x ) ) +  s~(x) represent the X-ray count 
from a diffraction experiment, dependent on some 
parameter x (for example, the angle of incidence of 
the X-ray beam on the sample), which can be written 
in terms of an ideal or average value (f(x)) and a 
noise term ~:(x), where (s~(x))= 0. The noise term 
represents fluctuations in the count owing to random 
effects and is assumed to obey a Poisson distribution. 
The Fourier transform of this is 

o o  

F(k) = f [(f(x)) + ((x)] e x p ( -  ikx) dx  
- - o o  

= (F(k)) + ~'-'(k), (A1) 

which defines the transforms of the average and 
noisy parts of the data. The variance in Fourier 
space is 

c o  e o  

o'2(k) = f f (¢(x)(*(x')) e x p [ -  ik(x - x')] dx dx'. 
- -  o o - -  o o  

(A2) 

This depends on the two-point correlation function 
(((x)(*(x')),  which, for uncorrelated fluctuations, is 
given by 

(((x)(*(x'))  = o ' ~ ( x ) 8 ( x -  x ') ,  (A3) 

where o-~(x) is the variance of the X-ray count. 
Substitution of (A3) in (A2) yields 

o o  

o'2(k) = f ~r~(x) dx, (A4) 
- - o o  

which is independent of k. This is the standard result 
demonstrating that uncorrelated noise has a constant 
spectral density. If Poisson statistics are assumed, 
then the variance of the measurement is equal to the 
mean. Therefore, 

~r2(k) = f (f(x)) dx = (F(0)), 
- - o o  

o-(k) = (F(O)) '/2, (A5) 

where (A1) has been used to relate the integral of 
(f(x)) to (F(k)) at k = 0. Thus, the standard deviation 
tr(k) of the Fourier transform of data obtained from 
a counting experiment (i.e. one governed by Poisson 
statistics) is constant and equals the square root of 
the value of the Fourier transform at k = 0. Note 
that it is F(k) that is determined from the data and 
not (F(k)). However, an estimate of the likely error 
can be obtained by using F(0) instead of (F(0)) in 
(A5). Furthermore, note that F(0) used in (A5) 
should be calculated from the complete data set, 
including the background count. 
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